Some reviews and lecture notes that might be useful
Generalized and non-invertible symmetries
J. McGreevy, "Generalized Symmetries in Condensed Matter", arXiv:2204.03045[cond-mat.str-el]
P. R. S. Gomez, "An Introduction to Higher-Form Symmetries", arXiv:2303.01817 [hep-th]
S. Schafer-Nameki, "ICTP Lectures on (Non-)Invertible Generalized Symmetries", arXiv:2305.18296 [hep-th]
T. D. Brennan, S. Hong, "Introduction to Generalized Global Symmetries in QFT and Particle Physics", arXiv:2306.00912v2 [hep-ph]
L. Bhardwaj, L. E. Bottini, L. Fraser-Taliente, L. Gladden, D. S.W. Gould, A. Platschorre, H. Tillim, "Lectures on Generalized Symmetries", arXiv:2307.07547v2[hep-th]
S.-H Shao, "TASI Lectures on Non-Invertible Symmetry", arXiv:2308.00747 [hep-th]
B. Pioline, "Lectures on on Black Holes, Topological Strings and Quantum Attractors (2.0)", arXiv:hep-th/0607227
C. Maccaferri, F. Marino, B. Valsesia, "Introduction to String Theory", arXiv:2311.18111 [hep-th]
Supersymmetry related
E. Poppitz, S. P. Trivedi, "Dynamical Supersymmetry Breaking", arXiv:hep-th/9803107
J. A. Harvey, "Magnetic Monopoles, Duality, and Supersymmetry", arXiv:hep-th/9603086
K. Intriligator, N. Seiberg, "Lectures on Supersymmetry Breaking", arXiv:hep-ph/0702069
S.S. Razamat, E. Sabag, O. Sela, G. Zafrir, "Aspects of 4d supersymmetric dynamics and geometry", arXiv:2203.06880 [hep-th]
Seiberg-Witten theory
A. Bilal, "Duality in N=2 SUSY SU(2) Yang-Mills Theory: A pedagogical introduction to the work of Seiberg and Witten", arXiv:hep-th/9601007
W. Lerche, "Introduction to Seiberg-Witten Theory and its Stringy Origin", arXiv:hep-th/9611190
L. Alvarez-Gaume, S.F. Hassan, "Introduction to S-Duality in N=2 Supersymmetric Gauge Theory. (A pedagogical review of the work of Seiberg and Witten)", arXiv:hep-th/9701069
K. Iga, "What do Topologists want from Seiberg--Witten theory? (A review of four-dimensional topology for physicists)", arXiv:hep-th/0207271
M. Martone, "The constraining power of Coulomb Branch Geometry: lectures on Seiberg-Witten theory", arXiv:2006.14038 [hep-th]
Integrability
A. Doikou, S. Evangelisti, G. Feverati, N. Karaiskos, "Introduction to Quantum Integrability", arXiv:0912.3350 [math-ph]
A. L. Retore, "Introduction to classical and quantum integrability", arXiv:2109.14280[hep-th]
Ostrogradsky's theorem
R. P. Woodard, "The Theorem of Ostrogradsky", arXiv:1506.02210[hep-th]
A. Ganz, K. Noui, "Reconsidering the Ostrogradsky theorem: Higher-derivatives Lagrangians, Ghosts and Degeneracy", arXiv:2007.01063 [hep-th]
Other
J. M. F. Labastida, C. Lozano, "Lectures in Topological Quantum Field Theory", arXiv:hep-th/9709192