(Potentially) Useful papers


Some reviews and lecture notes that might be useful


Generalized and non-invertible symmetries

  • J. McGreevy, "Generalized Symmetries in Condensed Matter", arXiv:2204.03045 [cond-mat.str-el]
  • P. R. S. Gomez, "An Introduction to Higher-Form Symmetries",
    arXiv:2303.01817
    [hep-th]
  • S. Schafer-Nameki, "ICTP Lectures on (Non-)Invertible Generalized Symmetries", arXiv:2305.18296 [hep-th]
  • T. D. Brennan, S. Hong, "Introduction to Generalized Global Symmetries in QFT and Particle Physics", arXiv:2306.00912v2 [hep-ph]
  • L. Bhardwaj, L. E. Bottini, L. Fraser-Taliente, L. Gladden, D. S.W. Gould, A. Platschorre, H. Tillim, "Lectures on Generalized Symmetries", arXiv:2307.07547v2 [hep-th]
  • S.-H Shao, "TASI Lectures on Non-Invertible Symmetry", arXiv:2308.00747 [hep-th]

Condensed matter related

  • D. Sénéchal, "An introduction to bosonization", arXiv:cond-mat/9908262 [cond-mat.str-el]
  • A. Kitaev, C. Laumann, "Topological phases and quantum computation", arXiv:0904.2771 [cond-mat.mes-hall]
  • E. Witten, "Three Lectures On Topological Phases Of Matter", arXiv:1510.07698 [cond-mat.mes-hall]
  • R. M. Nandkishore, M. Hermele, "Fractons", arXiv:1803.11196 [cond-mat.str-el]
  • R.Shankar, "Topological Insulators -- A review", arXiv:1804.06471 [cond-mat.str-el] 
  • A. J. Beekman, L. Rademaker, J. van Wezel, "An Introduction to Spontaneous Symmetry Breaking", arXiv:1909.01820 [hep-th]
  • M. Pretko, X. Chen, Y. You, "Fracton Phases of Matter", arXiv:2001.01722 [cond-mat.str-el]
  • J. McgGreevy, "Where do quantum field theories come from?", pdf
  • B. Bradlyn, M. Iraola, "Lecture Notes on Berry Phases and Topology", arXiv:2111.08751 [cond-mat.mes-hall]

Quantum field theory related

  • T. Hollowood, "6 Lectures on QFT, RG and SUSY", arXiv:0909.0859 [hep-th]
  • M. Neubert, "Renormalization Theory and Effective Field Theories", arXiv:1901.06573 [hep-ph]
  • R. Penco, "An Introduction to Effective Field Theories", arXiv:2006.16285 [hep-th]
  • L. Alvarez-Gaume, M. A. Vazquez-Mozo, "Lectures on Field Theory and the Standard Model: A Symmetry-Oriented Approach", arXiv:2306.08097 [hep-th]
  • V. Mastropietro, "Renormalization: general theory", arXiv:2312.11400 [hep-th]

Conformal field theory

String theory related

Supersymmetry related

  • E. Poppitz, S. P. Trivedi, "Dynamical Supersymmetry Breaking", arXiv:hep-th/9803107
  • J. A. Harvey, "Magnetic Monopoles, Duality, and Supersymmetry", arXiv:hep-th/9603086
  • K. Intriligator, N. Seiberg, "Lectures on Supersymmetry Breaking", arXiv:hep-ph/0702069
  • S.S. Razamat, E. Sabag, O. Sela, G. Zafrir, "Aspects of 4d supersymmetric dynamics and geometry", arXiv:2203.06880 [hep-th]

Seiberg-Witten theory

  • A. Bilal, "Duality in N=2 SUSY SU(2) Yang-Mills Theory: A pedagogical introduction to the work of Seiberg and Witten", arXiv:hep-th/9601007
  • W. Lerche, "Introduction to Seiberg-Witten Theory and its Stringy Origin", arXiv:hep-th/9611190
  • L. Alvarez-Gaume, S.F. Hassan, "Introduction to S-Duality in N=2 Supersymmetric Gauge Theory. (A pedagogical review of the work of Seiberg and Witten)", arXiv:hep-th/9701069
  • K. Iga, "What do Topologists want from Seiberg--Witten theory? (A review of four-dimensional topology for physicists)", arXiv:hep-th/0207271
  • M. Martone, "The constraining power of Coulomb Branch Geometry: lectures on Seiberg-Witten theory", arXiv:2006.14038 [hep-th]

Integrability

  • A. Doikou, S. Evangelisti, G. Feverati, N. Karaiskos, "Introduction to Quantum Integrability", arXiv:0912.3350 [math-ph]
  • A. L. Retore, "Introduction to classical and quantum integrability", arXiv:2109.14280 [hep-th]

Ostrogradsky's theorem

  • R. P. Woodard, "The Theorem of Ostrogradsky", arXiv:1506.02210 [hep-th]
  • A. Ganz, K. Noui, "Reconsidering the Ostrogradsky theorem: Higher-derivatives Lagrangians, Ghosts and Degeneracy", arXiv:2007.01063 [hep-th]

Other

  • J. M. F. Labastida, C. Lozano, "Lectures in Topological Quantum Field Theory", arXiv:hep-th/9709192
  • G. V. Dunne, "Aspects of Chern-Simons Theory", arXiv:hep-th/9902115
  • C. Closset, "Toric geometry and local Calabi-Yau varieties: An introduction to toric geometry (for physicists)", arXiv:0901.3695 [hep-th]
  • P. Kovtun, "Lectures on hydrodynamic fluctuations in relativistic theories", arXiv:1205.5040 [hep-th]
  • G. W. Moore, "Physical Mathematics and the Future", pdf
  • D. Grabovsky, "Chern-Simons Theory in A Knotshell", pdf
  • Y. Matsuo, S. Nawata, G. Noshita, R.-D Zhu, "Quantum toroidal algebras and solvable structures in gauge/string theory", arXiv:2309.07596 [hep-th]